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For a discrete time quantum walk �QW� on the N-cycle, allowing for decoherence on the coin, we derive a
number of results, including an explicit formula for the position probability distribution. For a QW of this type,
we show that the mixing behavior tends, in the long run, to a uniform distribution regardless of the initial state
of the system and irrespective of the parity of the number of nodes N. These results confirm the findings of
previous authors who arrived at similar conclusions through extensive numerical simulations. In particular, we
infer that the mixing time M��� for the time-averaged probability distribution is of order no greater than
O�N2 /��.
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I. INTRODUCTION

When the principles of quantum mechanics get intimate
with the theory of Markov chains, the resulting pedigree is a
powerful new paradigm which portends a revolution in the
world of electronic computing. Known as the theory of
quantum walks �QWs�, this novel line of research opens the
way to new realms of possibility, including the prospect of
superefficient algorithms capable of treating a class of prob-
lems known as “hard problems” �1–3�. However, even from
a purely mathematical perspective, these investigations have
inspired important advances in probability theory �4�.

Apart from the purely theoretical strides, a number of
physical models have been proposed and tested, some of
which have managed to induce, with varying degrees of suc-
cess, QW-like processes in physical systems �5–15�. Due pri-
marily to the need to conduct measurements, without which
it would not be possible to gather information about the state
of the system, all of these proposed models are subject to the
ubiquitous phenomenon known as decoherence. In other
words, decoherence is the cost of extracting knowledge
about the state of the system. The phenomenon of decoher-
ence has been studied extensively, both numerically and ana-
lytically, in various settings, including QWs on a line, on a
cycle, on a hypercube, and graphs of other kinds. For an
excellent review, see �3�.

In this paper, we examine the evolution of a QW on the
N-cycle under the assumption of decoherence-inducing dis-
turbances on the coin. In general, for a QW on the N-cycle,
one is interested not only in determining the shape of the
limiting �also known as stationary� distribution but also in
estimating the mixing time. The mixing time refers literally
to how fast a stochastic process converges to a stationary
distribution.

QWs on the N-cycle first received rigorous treatment in
�16�. Under the idealized assumption of no decoherence-
inducing disturbances of any kind and assuming that the par-
ity of the cycle length N is odd, the authors proved that the
coin-governed quantum walk on the N-cycle mixes to a uni-

form distribution. Moreover, they showed that the mixing
time for the time-averaged distribution is bounded above by
O��−3N ln N�. Subsequently, these estimates were sharpened
in �17–19�, wherein the mixing time is shown to be of order
O�N ln�1 /���.

More recently, decoherence effects have been imported
into the study of QWs on the N-cycle. Several models of
decoherence have appeared in the literature. Notably, in �20�,
decoherence is modeled by an ambient “thermal bath” which
induces damping of phase and/or amplitude. In this paper, we
adopt a model of decoherence which can be described as
follows. At each time step of the quantum walk, an observer
stands ready to apply a projective measurement. The prob-
ability of applying a measurement is given by a fixed param-
eter p, called the “decoherence rate.” In this scenario, three
distinct cases merit consideration: decoherence might be as-
sumed to apply �1� to the position only, �2� jointly to the
position and coin, or �3� to the coin only. In �17,19�, a full
analytic treatment is given in case �1� in addition to a nu-
merical treatment of all three cases. In this paper, our main
objective is to provide an analytic treatment of case �3�.

In this paper, we adopt an approach employed by Brun et
al. �21,22� in their treatment of decoherence influences on
linear QWs. By adapting this approach to QWs on the
N-cycle, we derive insights into the dynamics of QWs on the
N-cycle subject to decoherence on the coin degree of free-
dom. In particular, we provide analytic confirmation of the
numerical observations presented by Kendon and Tregenna
in �3,17�.

II. BASIC PROPERTIES OF A QW ON THE N-CYCLE

For a QW on the N-cycle, the position space of the walker
is the Hilbert space HN spanned by an orthonormal basis
��x� ,x�ZN�. The coin space is the Hilbert space H2 spanned
by an orthonormal basis ��j� , j=−1,1�. The “state space” is
H=HN � H2. Thus, a typical state � in H may be expressed
as

� = 	
x�ZN

	
j=−1,1

��x, j��x� � �j� .

The evolution of a QW on the N-cycle is determined by a
unitary operator U=S�I � C�, where the “shift operator”
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S :H→H is defined by S��x� � �j��= �x+ j� � �j�. As usual, I
denotes the identity operator on HN. Meanwhile, any unitary
operator C :H2→H2 may serve as the “coin operator.”

Given �0�H, let �t=Ut�0. Then the sequence of time-
iterated states ��t�0

� models the temporal evolution of a pure
�totally coherent� QW launched on the N-cycle with initial
state �0.

Let X denote the position operator on the position space
HN, so that X�x�=x�x�, where x�ZN. For a QW with initial
state �0, the probability P�x , t� of finding the walker at the
position x at time t is given by the standard formula

P�x,t� = Tr��x�
x���t�� ,

where ��t�=�t�t
†. Thus, at every instant t, the eigenvalues of

the operator Xt�U†t
XUt equate to the possible values of the

walker’s position with corresponding probability P�x , t�.
To conform to reality, any proposed model of quantum

computing must be capable of accounting for decoherence-
inducing events, including all instances of measurement.
Without loss of generality, we are free to assume that these
events occur potentially with probability p at each time step
t of the quantum walk. As in �6�, the sequence of
decoherence-inducing events may be modeled by the proba-
bilistic option of applying to the coin degree of freedom, at
each time step of the walk, a unital family of operators
�An�0�n��, jointly satisfying the condition

	
0�n��

Ân
†Ân = I . �1�

Accordingly, when adjusted for decoherence, the “density
operator” of the system acts on the probability density func-
tion � via the formula

��t + 1� = 	
0�n��

UÂn��t�Ân
†U†. �2�

In order to facilitate calculations, including the evaluation of
certain fundamental quantities, such as the probability
P�x , t�, it is advantageous to apply Fourier transformations to
all elements of the QW system. The conversion to the Fou-
rier dual amounts simply to a change of basis of the overall
state space of the system.

The conversion begins with the walker’s position space
HN, whose “home basis” of eigenstates is ��x� ,x=0, . . . ,N
−1�. The corresponding Fourier dual is the so-called momen-
tum basis ��k� ,k=0, . . . ,N−1�, defined explicitly by the for-
mula

�k� =
1

�N
	

x

e2�ixk/N�x� .

Equivalently, we have


x�k� =
1

�N
e2�ixk/N.

Accordingly, the Fourier dual of the evolution operator U,
denoted by Uk, is given by

Uk�k� � �j� = Ck�k� � �j� ,

where

Ck = �e−2�ik/N 0

0 e2�ik/NC . �3�

For simplicity and without loss of generality, we may assume
henceforth that every quantum walk under consideration is
launched from position �0� in coin state ��0�. As in �6�, our
analysis utilizes a so-called “decoherence superoperator”
Lkk� defined by the formula

Lkk���0�
�0� = 	
n

CkÂn��0�
�0�Ân
†Ck�

† . �4�

In terms of the superoperator Lkk�, the formulation of the
density operator, as defined in Eq. �2� by its action on the
density function �, may be generalized as follows:

��t� =
1

N
	

k
	
k�

�k�
k�� � Lkk�
t ��0�
�0� . �5�

Similarly, in terms of the superoperator Lkk�, the formulation
of the probability P�x , t� of finding the walker at position x at
time t becomes

P�x,t� = Tr��x�
x���t��

=
1

N
	

k
	
k�


x�k�
k��x�Tr�Lkk�
t ��0�
�0��

=
1

N2 	
k=0

N−1

	
k�=0

N−1

e2�ix�k−k��/N Tr�Lkk�
t ��0�
�0��

=
1

N
+

1

N2 	
k�k�

e2�ix�k−k��/N Tr�Lkk�
t ��0�
�0�� . �6�

In the sequel, occasion will arise also to utilize a time-
averaged version of P�x ,	�. By definition

P�x,	� =
1

	
	
t=0

	−1

P�x,t� , �7�

with the understanding that P�x , t� is given by Eq. �6�.
To quantify the rate at which the time-averaged distribu-

tion P�x ,	� eventually might settle to a stationary distribu-
tion, we adopt a measure of transition time M��� which, for
every �
0, is given by

M��� = min�	�∀ t�	:�P�x,t� − P��tv � �� . �8�

Here P� denotes the limiting distribution over the cycle,
while the expression

�P�x,t� − P��tv = 	
x

�P�x,t� − P��

measures the total variation over the cycle.
Similarly, given �
0, we define the mixing time M��� for

P�x , t� by the formula
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M��� = min�	�∀ t�	:�P�x,t� − P��tv � �� , �9�

where P� and �P�x , t�− P��tv are defined as above.
Within a margin of error, given by �
0, the mixing time

specifies how long it takes for the time-averaged probability
distribution of the walker’s position to transition to its limit-
ing configuration.

III. SOME PROPERTIES OF THE DECOHERENCE
SUPEROPERATOR Lk,k�

To avoid unpleasant complications and to permit us more
easily to illustrate our approach to the analysis of a QW on
the N-cycle subject to decohering influences, we concede, in
this paper, to confine our attention to a specific model. Ac-
cordingly, to serve as the coin operator of the system, we
choose the Hadamard operator

Ck =
1
�2
�e−i2�k/N e−i2�k/N

ei2�k/N − ei2�k/N . �10�

By the same token, to serve as the unital family �An�0�n�� of
decoherence-inducing operators on the coin degree of free-
dom, as in Eq. �1�, we specialize to the following choice of
three ��=2� operators:

Â0 = �1 − p�0, Â1 =
�p

2
��0 + �z�, Â2 =

�p

2
��0 − �z� ,

where 0� p�1 and �0 and �z are the Pauli matrices. The
level of decoherence induced by these operators is deter-
mined by the value of p, called the decoherence rate. Spe-
cifically, the QW evolves as if the state of the coin is mea-
sured at each time step with probability p. Thus, when p
=0, the QW evolves as a purely coherent quantum process.
At the other extreme, when p=1, the QW behaves exactly
like a classical random walk.

Now let L�C2� denote a Hilbert space of all 22 complex
matrices with inner product given by


M1,M2� � tr�M1
†M2� . �11�

Lemma 1. Let S be a superoperator on the Hilbert space
L�C2�, defined by

S = 	
n=0

2

U1Ân · Ân
†U2:B � 	

n=0

2

U1ÂnBÂn
†U2,

where U1 and U2 are 22 unitary matrices and B�L�C2�.
Then 
SB ,SB�� 
B ,B�. In particular, 
SB ,SB�= 
B ,B� for
all B�L�C2� if and only if the decoherence rate p=0.

Proof. See Appendix A.
An immediate corollary of this Lemma, essential to our

analysis, is the fact that ����1 for every eigenvalue � of S.
To justify this, suppose that B� is an eigenvector of S be-
longing to �. Then 
SB� ,SB��= 
�B� ,�B��= ���2
B� ,B��.
But since, according to the Lemma, 
SB ,SB�� 
B ,B�, we
see that ����1.

Now let us specialize to the superoperator Lk,k� which
maps L�C2� to L�C2�. If we choose as a basis for L�C2� the
Pauli matrices �0, �x, �y, and �z, then, in terms of this basis,
the 44 matrix representation of Lk,k� is given by

Lk,k� = �
c− �1 − p�is− 0 0

0 0 �1 − p�s+ c+

0 0 �p − 1�c+ s+

is− �1 − p�c− 0 0
� , �12�

where

c+ = cos
2��k� + k�

N
, s+ = sin

2��k� + k�
N

,

c− = cos
2��k� − k�

N
, s− = sin

2��k� − k�
N

.

After a somewhat tedious, but not very difficult calculation,
we arrive at the following explicit formula for the character-
istic polynomial f��� of Lk,k�:

f��� = det��I4 − Lk,k�� = �4 + ��1 − p�c+ − c−��3 + 2�p

− 1�c+c−�2 + �1 − p��c+ − �1 − p�c−�� + �1 − p�2.

�13�

The following proposition summarizes some basic attributes
of the eigenvalues of Lk,k�.

Proposition 2. Let � be an eigenvalue of Lk,k� where
0� p�1. Here,

�1� ����1,
�2� if ���=1 then �= �1,
�3� �=1 when and only when k=k�, and
�4� �=−1 when and only when �k�−k�= N

2 , in which case
the algebraic multiplicity of �=−1 is 1.

Proof. See Appendix B.

IV. EVOLUTION OF THE HADAMARD WALK ON
THE N-CYCLE SUBJECT TO DECOHERENCE

As our analysis will show, the behavior of a cyclic QW,
when exposed to any level decoherence, however slight, is
markedly different from that of a purely coherent quantum
random walk. The slightest disturbance forces the QW to
behave ultimately like a classical random walk, which, in the
long run, mixes always to a uniform distribution. Our find-
ings confirm the predictions in �17�, which are based on nu-
merical simulations.

Theorem 3. Suppose that a quantum walk, driven by the
Hadamard coin operator, is launched on the N-cycle with
initial coin state ��0� and with decoherence rate p
0. If N is
odd, then P�x , t� converges to 1

N on all nodes of the cycle. If
N is even, then P�x , t� converges to 2

N on the supporting
nodes of the cycle and to 0 on the nonsupporting nodes of
the cycle.

Proof. See Appendix C.
A classical random walk on a cycle of any size and any

parity mixes always to a uniform distribution both in the
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strong sense of the raw distribution P�x ,	� and in the weak
sense of the time-averaged distribution P�x ,	�. At the other
extreme, for a purely coherent QW, the limiting distribution,
even in the weak sense of lim	→� P�x ,	�, can fail to be uni-
form. For instance, consider the special case of a purely co-
herent QW driven by the Hadamard coin operator. Depend-
ing on the parity of the cycle, the limiting distribution, even
in the weak sense, may or may not be uniform. According to
�16�, on a cycle with an odd number of nodes, the limiting
distribution represented by lim	→� P�x ,	� is uniform. But, as
shown in �23,24�, on a cycle with an even number of nodes,
the limiting distribution fails to be uniform unless an extra
phase is added to the Hadamard coin operator.

Our analysis bridges the gulf between the two extremes of
purely coherent and purely classical. For a QW on the
N-cycle driven by the Hadamard coin operator, the following
corollary specifies the long-term behavior of the weak limit-
ing distribution represented by lim	→� P�x ,	�.

Corollary 4. Suppose that a quantum walk on the N-cycle,
driven by the Hadamard coin operator, is launched from any
initial coin state. If the decoherence rate p
0, then the time-
averaged distribution P�x ,	� converges to a uniform distri-
bution.

For arbitrary values of k, k�, and N, the task of calculating
the eigenvalues and eigenvectors of the matrix representation
of Lk,k� can be quite difficult. This explains our inability, at
this time, to offer a more general formula for the mixing time
M���. However, in the special case where N is odd, the fol-
lowing result is relatively easy to justify.

Theorem 5. Suppose that the quantum walk is released on
the N-cycle from the initial coin state �0= �1�, driven by the
Hadamard coin operator and subject to decoherence rate p

0. If N is odd, then the probability P�x , t� converges to a
uniform distribution with mixing time M����O�N2 /��.

Proof. See Appendix D.

V. CONCLUSION AND BEYOND

Our analysis suggests a sharp contrast in behavior be-
tween quantum walks which are purely coherent and quan-
tum walks which are tainted by even the slightest trace of
decoherence. In particular, when exposed to any nonzero
level of decoherence on the coin degree of freedom, a QW
behaves eventually like a classical random walk. In fact, if
the decoherence rate p
0, a QW on the N-cycle appears to
mix always to a uniform distribution at a rate no faster than
a classical random walk. However, since our analysis pro-
vides only a crude upper bound for the order of the mixing
time M���, the possibility remains open that a significantly
sharper upper bound exists.

Strictly speaking, our results in this paper pertain only to
the case of the Hadamard coin operator. However, a similar
approach should work at least for the more general type of
coin operator A��� treated in �25�. Moreover, with some fur-
ther effort, it should be possible to generalize our results by
removing any restrictions on the parity of N or the initial
state of the coin.
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APPENDIX A: PROOF OF LEMMA 1

Proof. Suppose B= �bij�22. Since Tr�M1M2�=Tr�M2M1�,
we obtain 
SB ,SB�= �1− p�2
B ,B�+ �2p− p2���b11�2+ �b22�2�
� �1− p�2
B ,B�+ �2p− p2�
B ,B�= 
B ,B�. The “=” holds if
and only if �2p− p2���b12�2+ �b21�2�=0, which is valid for ar-
bitrary values of b12 and b21 if and only if p=0.

APPENDIX B: PROOF OF PROPOSITION 2

Proof of �i�. Lk,k� is a special case of the superoperator S
in Lemma 1, according to which the moduli of all eigenval-
ues of Lk,k� are less than or equal to unity.

Proof of �ii�. If ei� is a nonreal eigenvalue of Lk,k�, where
� is a real number, then the conjugate e−i� must also be an
eigenvalue and e−i��ei�. Hence f���= ��−ei����−e−i����2

+a�+ �1− p�2� for some a�C. Comparing corresponding co-
efficients of both sides of Eq. �13�, we obtain the following
system of equations:

a − 2 cos � = �1 − p�c+ − c−,

1 + �1 − p�2 − 2a cos � = − 2�1 − p�c+c−,

a − 2�1 − p�2 cos � = �1 − p�c+ − �1 − p�2c−.

After some elementary algebraic manipulations, we infer that
1+ �1− p�2=−�1− p�cos�2��k�+k� /N�cos�2��k�−k� /N�,
which is impossible since the modulus of the left-hand side
is strictly greater than the modulus of the right-hand side.
This contradiction implies that any unit eigenvalue of Lk,k�
must be real.

Proof of �iii�. �=1 is an eigenvalue of Lk,k� if f�1�= �1
−cos�2��k�−k� /N���1+2�1− p�cos�2��k� + k� /N�+ �1− p�2�
=0 and if 1−cos�2��k�−k� /N�=0, which implies k�=k.

Proof of �iv�. �=−1 is an eigenvalue of Lk,k� if f� − 1�
= �1+cos�2��k� − k� /N���1−2�1 − p�cos�2��k�+k� /N� + �1
− p�2�=0 and if 1+cos�2��k�−k� /N�=0, which implies �k�
−k�= N

2 . In this case, since f��−1�= �1− p�2−1�0, the alge-
braic multiplicity of �=−1 is 1.

APPENDIX C: PROOF OF THEOREM 3

Proof. According to Eq. �6�,

P�x,t� =
1

N
+

1

N2 	
k�k�

e2�ix�k−k��/NTkk��t� , �C1�

where
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Tkk��t� = Tr�Lkk�
t ��0�
�0�� = 2�1,0,0,0�Lk,k�

t �
�1

�2

�3

�4

� .

We remark that �1= 1
2 for all admissible choices of ��0� in the

column vector ��1 ,�2 ,�3 ,�4�= ��1 ,�2 ,�3 ,�4�T= ��0�
�0�.
If N is odd and k�k�, then the modulus of every eigen-

value of Lk,k� is strictly less than 1, in which case every entry
of Lk,k�

t tends to zero as t→�. Therefore, P�x , t�→ 1
N as

t→�.
It remains to evaluate P�x , t� for N of even parity. For the

remaining duration of this proof, let Ekk�=e2�ix�k−k��/NTkk��t�.
Also, for brevity of notation, let both sides of Eq. �C1� be
multiplied by N2.

By Proposition 2, if �k−k��= N
2 , then −1 is an eigenvalue

of Lk,k�. Accordingly, Eq. �C1� becomes

N2P�x,t� = N + 	
�k−k��=N/2

Ekk� + 	
�k−k���N/2,0

Ekk�

= N + �− 1�t 	
�k−k��=N/2

cos��x� + 	
�k−k���N/2,0

Ekk�.

�C2�

The sum of the first two terms of Eq. �C2� is either 2N or 0
depending on whether the parities of t and x are equal or
opposite, respectively. Meanwhile, in the third term of Eq.
�C2�, since k�k� and �k−k��� N

2 , the modulus of every ei-
genvalue of Lk,k� is strictly less than 1, which implies that
every entry of Lk,k�

t tends to zero as t→�. Thus, the third
term vanishes as t→�. In conclusion, when N is even,
P�x , t� tends either to 2

N or 0 as t→�.

APPENDIX D: PROOF OF THEOREM 5

To facilitate the proof of Theorem 5, we invoke a Lemma
from elementary linear algebra.

Lemma. Let A be a square matrix with complex entries. If
�=1 is not an eigenvalue of A, then, for every positive inte-
ger 	, we have 	t=0

	−1At= �I−A�−1�I−A	�.
Proof of Lemma. For every positive integer 	, note that

�I−A�	t=0
	−1At= I−A	. Since 1 is not an eigenvalue of A, every

eigenvalue of I−A is nonzero, which implies that I−A is
invertible. Therefore 	t=0

	−1A	= �I−A�−1�I−A	�.
Proof of Theorem 5. Let �0,	� denote the time interval

over which the quantum walk unfolds. Our strategy is to
show, for every value of x in the interval �0,N�, where N
is the length of the topological cycle, that the value of
�P�x ,	�− 1

N � is of order at most O�N /	�, where the value
of the implicit constant of proportionality is independent of
x. Although conceptually very simple, the technical aspects
of the proof can become quite formidable unless we exer-
cise due restraint. To minimize the proliferation of exces-

sively lengthy formulas, we introduce the following abbre-
viations:

a = 2�1,0,0,0� ,

b = � 1
2 ,0,0, 1

2� = ��0�
�0� ,

q = 1 − p .

We proceed to analyze the expression

P�x,	� −
1

N
=

1

	N2 	
k�k�

e2�ix�k−k��/N	
t=0

	−1

Tr�Lkk�
t ��0�
�0�� ,

which is based on Eq. �7�. Since k�k�, we know, by Propo-
sition 2, that 1 is not an eigenvalue of Lk,k�. Therefore, by the
preceding Lemma, we have

	
t=0

	−1

Lk,k�
t = �I − Lk,k��

−1�I − Lk,k�
	 � .

Hence, mindful of the abbreviations introduced above, we
have

	
t=0

	−1

Tr�Lkk�
t ��0�
�0�� = a�I − Lk,k��

−1�I − Lk,k�
	 �b

in terms of which the above expression for P�x ,	�− 1
N be-

comes

1

	N2 	
k�k�

e2�ix�k−k��/N · a�I − Lk,k��
−1�I − Lk,k�

	 �b . �D1�

Since the modulus of every eigenvalue of Lk,k� is strictly less
than 1, the 	th power of Lk,k� tends to zero as 	→�. Thus,
for the purpose of estimating the asymptotic behavior of
P�x ,	�− 1

N , we safely may ignore the component of the sum
dominated by Lk,k�

	 , leaving only

1

	N2 	
k�k�

e2�ix�k−k��/N · a�I − Lk,k��
−1b . �D2�

After a straightforward calculation, the explicit expansion of
a�I−Lk,k��

−1b equates to

	
k�k�

1 − q2ei2��k�−k�/N − q cos
2��k + k��

N
�1 − ei2��k�−k�/N�

�1 − cos
2��k� − k�

N
�1 + 2q cos

2��k + k��
N

+ q2 .

�D3�

The task of finding an upper bound for the modulus of Eq.
�D3� turns out to be quite easy. For each of the summands of
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Eq. �D3�, note that the modulus of the numerator is bounded
above by 4 while the modulus of the second factor �enclosed
in square brackets� of the denominator is bounded below by
p2. Therefore, entire sum �D3� is bounded above by

4

p2 	
k�k�

1

1 − cos
2��k� − k�

N

=
8

p2 	
j=1

N−1
j

1 − cos
2�j

N

,

which means that expression �D2� is bounded above by

B�	,N� =
8

p2	N2 	
j=1

N−1
j

1 − cos
2�j

N

. �D4�

Now, provided N is not too small, the value of B�	 ,N� can be
estimated by way of a Riemann sum as follows:

B�	,N� =
8

	p2 	
j=1

N−1 j
N . 1

N

1 − cos2�j
N

�
8

	p2�
1/N

1−1/N udu

1 − cos�2�u�

=
4

	p2�2�
�/N

�N−1��/N

x csc2 xdx

=
4

	p2�2 �− x cot x + ln sin x���/N
�N−1��/N = O�N/	� .

�D5�

Thus, we have

�P�x,	� −
1

N
� � O�N/	� �D6�

and

�P�x,	� −
1

N
�

tv
= 	

x
�P�x,	� −

1

N
� � O�N2/	� . �D7�

Referring back to Eq. �8�, we conclude that the mixing time
M����O�N2 /��.

�1� J. Kempe, Contemp. Phys. 44, 307 �2003�.
�2� A. Ambainis, Int. J. Quantum Inf. 1, 507 �2003�.
�3� V. Kendon, Math. Struct. Comp. Sci. 17, 1169 �2006�.
�4� N. Konno, in Quantum Potential Theory, Lecture Notes in

Mathematics, edited by U. Franz and M. Schurmann �Springer-
Verlag, Heidelberg, 2008�, Vol. 1954, pp. 309–452.

�5� W. Dür, R. Raussendorf, V. M. Kendon, and H.-J. Briegel,
Phys. Rev. A 66, 052319 �2002�.

�6� P. L. Knight, E. Roldán, and J. E. Sipe, Phys. Rev. A 68,
020301�R� �2003�.

�7� J. Du, H. Li, X. Xu, M. Shi, J. Wu, X. Zhou, and R. Han, Phys.
Rev. A 67, 042316 �2003�.

�8� B. C. Sanders, S. D. Bartlett, B. Tregenna, and P. L. Knight,
Phys. Rev. A 67, 042305 �2003�.

�9� P. L. Knight, E. Roldán, and J. E. Sipe, Opt. Commun. 227,
147 �2003�.

�10� C. A. Ryan, M. Laforest, J. C. Boileau, and R. Laflamme,
Phys. Rev. A 72, 062317 �2005�.

�11� X. Zou, Y. Dong, and G. Guo, New J. Phys. 8, 81 �2006�.
�12� R. Côté, A. Russell, E. E. Eyler, and P. L. Gould, New J. Phys.

8, 156 �2006�.
�13� Z.-Y. Ma, K. Burnett, M. B. d’Arcy, and S. A. Gardiner, Phys.

Rev. A 73, 013401 �2006�.
�14� C. M. Chandrashekar, Phys. Rev. A 74, 032307 �2006�.
�15� H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, and

Y. Silberberg, Phys. Rev. Lett. 100, 170506 �2008�.
�16� D. Aharanov, A. Ambainis, J. Kempe, and U. Vazirani, Pro-

ceedings of the 33rd Annual ACM Symposium on Theory of
Computing �ACM, New York, 2001�, pp. 50–59.

�17� V. Kendon and B. Tregenna, Phys. Rev. A 67, 042315 �2003�.
�18� P. Richter, New J. Phys. 9, 72 �2007�.
�19� P. C. Richter, Phys. Rev. A 76, 042306 �2007�.
�20� S. Banerjee, R. Srikanth, C. M. Chandrashekar, and P. Rungta,

Phys. Rev. A 78, 052316 �2008�.
�21� T. A. Brun, H. A. Carteret, and A. Ambainis, Phys. Rev. A 67,

032304 �2003�.
�22� T. A. Brun, H. A. Carteret, and A. Ambainis, Phys. Rev. Lett.

91, 130602 �2003�.
�23� B. Tregenna, W. Flanagan, R. Maile, and V. Kendon, New J.

Phys. 5, 83 �2003�.
�24� M. Bednarska, A. Grudka, P. Kurzyński, T. Łuczak, and A.

Wójcik, Phys. Lett. A 317, 21 �2003�.
�25� C. Liu, J. Phys. A: Math. Theor. 41, 355306 �2008�.

CHAOBIN LIU AND NELSON PETULANTE PHYSICAL REVIEW E 81, 031113 �2010�

031113-6


